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We reformulate a scheme for calculation of the energies of excited states which, unlike the 
variation method, does not require that the trial function be orthogonalized to the wavefune- 
tions for lower excited states. The possibility of obtaining wavefunctions as well as energies is 
discussed, and an example of the scheme's application is made to the harmonic oscillator. 

On donne une nouvelle forme pour une methode de calcul des niveaux excit6s. La methode 
ne demande pas l'orthogonalisation de la fonction d'essai par rapport aux fonctions d'onde 
eorrespondant aux niveaux inf6rieurs, ee qui montre un avantage auprgs de la methode varia- 
tionnelle. La possibilit6 d'obtenir les fonctions d'onde elles-mgmes est diseut6e, et on donne un 
exemple de l'applieation de eette nouvelle methode. 

Es wird eine neue Form fiir eine Methode zur Berechnung yon angeregten Zustiinden ge- 
geben. Die Probefunktion braucht nieht wie bei der Variationsmethode orthogonal zu den 
Wellenfunktionen der tiefer liegenden Zust~nden zu sein. Es wird die M6glichkeit diskutiert, 
Wellenfunktionen ebenso wie Energien zu erhalten. Das Schema wird auf den harmonischen 
Oszillator angewandt. 

E x c e p t  in the  case of l inear  var ia t ion  functions,  the  usual  va r i a t iona l  procedure  
is of  ve ry  l imi ted  use for exc i ted  s tates .  The expec ta t ion  value of  the  H a m i l t o n i a n  
is an  upper  bound  for the  t rue  exci ted  s ta te  eigenvalue only  i f  the  t r ia l  funct ion  is 
chosen or thogonal  to  the  eigenfunctions corresponding to  all  lower eigenvalues.  
Whi le  one can of ten get  the  energies of the  ground  and  perhaps  the  lower exci ted  
s ta tes  fa i r ly  accura te ly ,  this  b y  no means  implies  t h a t  one has a good approx ima-  
t ion  to  the  t rue  wavefunct ions  [1, 2, 4], so the  or thogonal iza t ion  cannot  be carr ied 
out. We  have  recen t ly  given a scheme [3] for obta in ing  an upper  bound  to  an  
exc i ted  energy level which requires knowledge of the  energy alone of the  s ta te  
i m m e d i a t e l y  below. Here,  we re formula te  the  method ,  and  discuss the  poss ib i l i ty  
of ob ta in ing  eigenfunctions as well as eigenvalues.  Throughout ,  of  course, we 
refer only  to  s ta tes  of one f ixed symmet ry .  

The procedure  prev ious ly  p resen ted  was the  following: a) Choose a t r ia l  func- 
t ion  for which <H}, the  expec t a t i on  value of the  t I ami l ton i an ,  is grea ter  t h a n  Ej,  
the  jth eigenenergy,  b) Using this  funct ion,  eva lua te  L(c~) = c¢ - (c¢ 2 - 2 c¢ <H} + 

1 

+ <H~>) y as a funct ion  of  the  p a r a m e t e r  ~. c) L(c¢) is monotomic  in ~. W h e n  
L ( a )  > Ej ,  2 o~ -- E j  will be an upper  bound  to E~+I. 

Now L(c¢) > E j  implies  

2 ~ > (<H a) -- E~)/(<H> -- Ej)  

so t h a t  

2 ~ --  E] > (<H 2> -- E] <H>)/(<H> - E j ) .  



344 J E ~ R Y  ~OOI)ISSIAN : 

We m a y  show d i rec t ly  t h a t  this  is not  less t han  Ej+ 1 whenever  ( H }  > Ej, or t h a t  

(H a) - Es (H) 
--" E ]q -  1 > 0 . ( 1 )  (H) - Es 

The ]eft side of (1) m a y  be wr i t t en  as 

(H~) - (Es + Es~l) (H) + E~- (Ej+I) 
(H) - Ej 

The denomina to r  is posi t ive  b y  hypothesis ,  while the  numera to r  is equal  to  the  
expec t a t i on  va lue  of ( H -  Ej)  (H - Ei+I). This is a no, t -negat ive  ope ra to r  (all 
e igenvalues >_ 0), so i ts  expec ta t ion  value for any  funct ions is >_ 0, and  our 
Theorem is proved.  

I t  is i m p o r t a n t  to  po in t  out  t h a t  no th ing  m a y  be gained b y  shift ing the  zero of 
energy.  I f  H ~ H q- A,  Ej  ~. E j  --  A,  etc.,  the  left  side of (1) becomes 

(H 2) + A (fir} - Ej (H) - E~ A 
(H) - Es - -  -- (EI+I + A )  

and all the  A ' s  cancel off. 
Is  i t  possible, t}om a considera t ion  of  

Ks "- <H a ) - E j ( H )  
(H) - Es (2) 

alone, to ob ta in  an app rox ima t ion  to the  (j-t-  t)  t~ eigenfunet ion as well as the  
(] ÷ 1) th eigenvalue ? We explore this  b y  wri t ing the  t r ia l  funct ion y~ as the  sum 
of two pa r t s  : the  )'th eigenfunct ion ~0j and  the  pa r t  or thogonal  to  ~01, X. I f  X and  
~0j are t aken  as normal ized  to uni ty ,  

1 
= (e ~ + 1 ) - ~  (e~0;- + X) (3) 

is also normalized.  The number  e is not  necessar i ly  small.  Now we have 

< g >  -- (g2 @ t)  1 (82~j  @ < X  ] H ! X ) )  . 

For  this  to  be greater  t h a n  E;-, we require ( X  [H I X )  > Ej. Also, 

< g  2 ) = ( e  ~ + t )  *(e ~ E / ~ q - < X ! g 2 [ x > )  
so t ha t  

(XiH ~]X)- E ~ ( X I H I X )  _ ( X i H a ] X ? -  E s ( X I H i X )  (4) 
K j =  e, Ej+ ( X I H I X ) -  (e 2+I)  Ej -- ( X I H [ X ) - E j  

i.e. i ndependen t  of  e. 
Eq.  (4) expresses bo th  the  advan t age  and  shor tcoming of  the  present  method .  

Since K i does no t  depend  on how much  the  t r ia l  funct ion is con t amina t ed  b y  ~j, 
i t  is c lear ly no t  necessary to or thogonal ize  ~f to  y% This also means ,  however,  t h a t  
one cannot  use min imiza t ion  of K j  to  approach  the  t rue  wavefunct ion  ~fj+l, since 
one would never  know how large was the  admix tu re  of yJj in ~f. I f  ~0j were known, 
one could of  course or thogonal ize  ~0 to  it.  F o r  <H)  > Ej,  we know t h a t  K i > Ej+I, 
and if  we t ake  e = 0 and X = y;~'+l in  (3) Kj- becomes 

(E~ .+ ,  - F_,j E j + ~ ) / ( E + + ,  - -  E , )  - E j + : .  

Then we can use the  min imiza t ion  of K / t o  approach  ~0i+1. The necess i ty  of ortho-  
gonalizing ~0 to  Ysi brings us a lmost  to  the  s i tua t ion  we face in  var ia t ion  theory .  The 
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advantage  still remains tha t  in m a n y  cases we need orthogonahze the trial func- 
t ion to  one lower eigenfunction only and not  to  all. 

The present scheme for obtaining upper bounds on excited state energies was 
applied [3] in a different form to  the 2~+ states of  the molecular ion l:f +. For  the 
first and second excited states, upper  bounds were obtained which were, respec- 
tively, high by  0.034 and 0.17 a tomic units. As a fur ther  example, we apply  the 
scheme to  the familiar one-dimensionM harmonic oscillator problem. 

The one-dimensional harmonic  oscillator equat ion 

dx~- + ~ 7 -  Y' = 

has the well-known energy levels 
1 l 

Ej = (i + 1) ~ - ~ - ~  
1 1 

and the solutions ~0j are Hermite  polynomials times exp (--  ½ m~ kY x~/h). Le t  us 
use a trial function of  the form 

1 
y~ = (2 A/~)~ e - A x 2  

so tha t  ~v is normalized and 
1 

- -  2mHy~/h 2 = (2A/~)~ (--  2A ÷ 4A 2 x 2 - mkx2/h ~) e -Ax~  . 

This gives 

<H> = Ah2/2m + k/8A 

</t2> = ~ _ -  -i- + ~ + 32 A~ h~/" 

t 1 
I f  we now write A = ak~ m-~/h, so tha t  a is dimensionless, and measure Ej  and 

1 1 
Ej+I in units of  kg m---~/~, we have 

K~ 48a 4 - 8 a  2 + 3 -  32a aE~--8aEj  
> Ej+1. (5) 

h 1/k/m 32a a + 8a - 64a 2 Ej 

Here, Ej  = (?" ~- 1/2) and the condition tha t  <H> be greater t han  E i is equivalent  
to having the denominator  in (5) positive, so we choose a positive. 

The results in the table are what  one obtains for Kj  with various values of  )" 
1 !  and a. For  ?" = 0, any  positive a will do, bu t  for ] ¢  0 the range E i - (E~ -- ~)u _< 

a _< E 1 ÷ (E~ _ ~)~1 is ruled out. We note tha t  the denominator  of  (5) can be made 
positive for a large enough, regardless of  ]. This shows the present trial function 
m a y  be used to get  upper  bounds on all excited states, a l though we might  consider 
the trial function as a good approximat ion for the ground state only. I t  has no 
nodes and no maxima  for x # 0, as do the true excited state functions, so does not  
resemble any  of  these*. These results are similar to those of Ref. [•]. Wi th  the one- 
parameter  trial function, we obtain a good upper  bound only for the lowest 
excited state (2.50 compared to the true value of  1.50). To get  comparably  good 
results for other  states, we must  change the form of the trial function. 

* I am grateful to Dr. K. JtrG for emphasizing this point. 
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Table. Calculated Upper Bounds~ 

a i = o  j = l  j = 2  

0.0t  38.5312 40.8977 43.7375 
0.03 13.5491 17.0440 24.6983 
0.07 6.8594 22.5830 - -  
0.30 2.7000 - -  
0.50 2.5000 - -  - -  
1.00 2.8750 - -  - -  
3.00 5.6250 103.6250 - -  
5.00 8.5750 14.4774 492.5750 

10.00 16.0375 19.1793 24.8t36 

We here give Kj ,  which is an upper  bound  on 
E3+1. Dashed  lines mean  denomina to r  of  Ks was 
neggtix~e. 
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