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We reformulate a scheme for calculation of the energies of excited states which, unlike the
variation method, does not require that the trial function be orthogonalized to the wavefunc-
tions for lower excited states. The possibility of obtaining wavefunctions as well as energies is
discussed, and an example of the scheme’s application is made to the harmonic oscillator.

On donne une nouvelle forme pour une methode de caleul des niveaux excités. La methode
ne demande pas 'orthogonalisation de la fonction d’essai par rapport aux fonctions d’onde
correspondant aux niveaux inférieurs, ce qui montre un avantage auprés de la methode varia-
tionnelle. La possibilité d’obtenir les fonctions d’onde elles-mémes est discutée, et on donne un
exemple de 'application de cette nouvelle methode.

Es wird eine neue Form fiir eine Methode zur Berechnung von angeregten Zustinden ge-
geben. Die Probefunktion braucht nicht wie bei der Variationsmethode orthogonal zu den
Wellenfunktionen der tiefer liegenden Zustdnden zu sein. Es wird die Moglichkeit diskutiert,
Wellenfunktionen ebenso wie Energien zu erhalten. Das Schema wird auf den harmonischen
Oszillator angewandt.

Except in the case of linear variation functions, the usual variational procedure
is of very limited use for excited states. The expectation value of the Hamiltonian
is an upper bound for the true excited state eigenvalue only if the trial function is
chosen orthogonal to the eigenfunctions corresponding to all lower eigenvalues.
While one can often get the energies of the ground and perhaps the lower excited
states fairly accurately, this by no means implies that one has a good approxima-
tion to the true wavefunctions [1, 2, 4], so the orthogonalization cannot be carried
out. We have recently given a scheme [3] for obtaining an upper bound to an
excited energy level which requires knowledge of the energy alone of the state
immediately below. Here, we reformulate the method, and discuss the possibility
of obtaining eigenfunctions as well as eigenvalues. Throughout, of course, we
refer only to states of one fixed symmetry.

The procedure previously presented was the following: a) Choose a trial func-
tion for which (H), the expectation value of the Hamiltonian, is greater than Ej,
the jth eigenenergy. b) Using this function, evaluate L{x) = & — (62 — 2 & {<H) +-

+ <H2>)% as a function of the parameter «. ¢) L(x) is monotomic in . When
L{x) > Ej, 2 x — E; will be an upper bound to ;.
Now L(x) > E; implies
2 x> (CH? — EY)|(KH) — Ey)
so that
20— B> ((HY — By KHD)(KHY — By) .
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We may show directly that this is not less than %£;,, whenever (H) > Ej, or that
) ~ By (H)

@ F - Ej+1 >0. {1)

The left side of (1) may be written as
(H?) — (B + Bya1) H) + B (Bpa)
(H) - B; '

The denominator is positive by hypothesis, while the numerator is equal to the
expectation value of (H — E;) (H — Eyy;). This is a non-negative operator (all
eigenvalues > 0), so its expectation value for any functions is > 0, and our
Theorem is proved.

Tt is important to point out that nothing may be gained by shifting the zero of
energy. f H — H + A, Ij — E; + 4, etc., the left side of (1) becomes

H» + A H)-B; H) - E A

<H> — By - (E]"'H +A)
and all the 4’s cancel off.
Is it possible, from a consideration of
- HY - B H) ;
BT .

alone, to obtain an approximation to the (5 -+ 1) eigenfunction as well as the
(j + 1)th eigenvalue ! We explore this by writing the trial function y as the sum
of two parts: the jtb eigenfunction y; and the part orthogonal to y;, X. If X and
yy are taken as normalized to umity,

1
2

p=(e+ 1) 2 (ey; + X) (3)

is also normalized. The number ¢ is not necessarily small. Now we have
Hy=(2+ 1)1 (2B +<(X|H{X)).
For this to be greater than Kj, we require (X | H | X» > ;. Also,

CH? = (2 - 1)1 (2 B + (X | B? | X))
so that
o XU EEHIX) X B B HX @
T e+ (X |HI|X) - (2 4+ 1) B (X|H|X)-E;
i.e. independent of ¢.

Eq. (4) expresses both the advantage and shortcoming of the present method.
Since K; does not depend on how much the trial function is contaminated by vy,
it is clearly not necessary to orthogonalize y to y;. This also means, however, that
one cannot use minimization of K; to approach the true wavefunction ;4, since
one would never know how large was the admixture of y; in y. If y; were known,
one could of course orthogonalize v to it. For (H) > Ej, we know that K; > By,
and if we take ¢ = 0 and X = y;44 in (3) K; becomes

(Ey?+1 . Ei EJ'+1)/(E]'+1 - Ei) = E9'+1 .

Then we can use the minimization of K; to approach 4. The necessity of ortho-
gonalizing y to y; brings us almost to the situation we face in variation theory. The
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advantage still remains that in many cases we need orthogonalize the trial func-
tion to one lower eigenfunction only and not to all.

The present scheme for obtaining upper bounds on excited state energies was
applied [3] in a different form to the 23 ¥ states of the molecular ion Hf. For the
first and second excited states, upper bounds were obtained which were, respec-
tively, high by 0.034 and 0.17 atomic units. As a further example, we apply the
scheme to the familiar one-dimensional harmonic oscillator problem.

The one-dimensional harmonie oscillator equation

d?y 2m

=t (B~ % ka?)yp =0

has the well-known energy levels

1

Y k2 m

[N

Ej=(+

oj=

L1
and the solutions y; are Hermite polynomials times exp (— ¥ m2% k2 22/h). Let us

use a trial function of the form

p= (2 Ajm)i A7
so that y is normalized and
— OmHyli = (2AJn)E (— 24 + 442 22 — mka?ji?) ¢ AT
This gives
(Hy = AR%2m + k/8A4

i ko 3A%R® 3 mk?
2N ~ - —
H= Zm( £t om T 32A2h2>

1 1 .- .
If we now write 4 = ak?® m2/h, so that o is dimensionless, and measure K; and
1 _ 1
;.1 in units of k2m™ 2[R, we have
K;  48a* — 842+ 3 — 324* H; — 8a E;
BYkm 324® + 8a — 64a® J;

Here, F; = (j + 1/2) and the condition that (H> be greater than E; is equivalent
to having the denominator in (5) positive, so we choose a positive.
The results in the table are what one obtains for K; with various values of j

> By - (5)

and a. For j = 0, any positive o will do, but for j+ ( the range B; — (£ — %)% <

a< B+ (B} — %)% is ruled out. We note that the denominator of (5) can be made
positive for a large enough, regardless of . This shows the present trial function
may be used to get upper bounds on all excited states, although we might consider
the trial function as a good approximation for the ground state only. It has no
nodes and no maxima for z # 0, as do the true excited state functions, so does not
resemble any of these*. These results are similar to those of Ref. [1]. With the one-
parameter trial function, we obtain a good upper bound only for the lowest
excited state (2.50 compared to the true value of 1.50). To get comparably good
results for other states, we must change the form of the trial function.

* T am grateful to Dr. K. Jug for emphasizing this point.
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Table. Calculated Upper Bounds®

a j=0 j=1 j=2
0.01 38.5312 40.8977 43.7375
0.03 13.5491 17.0440 24.6983
0.07 6.8594 22.5830 —

0.30 2.7000 — —

0.50 2.5000 — —

1.00 2.8750 — —

3.00 5.6250 103.6250 —

5.00 8.5750 144774 492.5750
10.00 16.0375 19.1793 24.8136

= We here give K, which is an upper bound on
Fjy1. Dashed lines mean denominator of K; was
negative.
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